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ABSTRACT: In this article, a strain energy density function is proposed in terms of the principal invariants of the left Cauchy-Green

strain tensor for Rubber-like materials. This model due to its mathematical structure lies in the category of polynomial hyperelastic

models. To compare the performance of the proposed model with the Rivlin set, some test data of rubber-like materials with pure

homogeneous deformations are used. It is shown that the proposed model has better agreement with the test data compared to the

selected model. As an application of the proposed model, it is used to obtain a closed form solution for analysis of rubbery solid cir-

cular cylinders with S-shaped and semi J-shaped mechanical behavior under the torsion superimposed on the axial extension. More-

over, the results predicted from the proposed model are compared to classic models to investigate the results accuracy for

simplification done. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41718.
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INTRODUCTION

To characterize the mechanical behavior of rubber-like materi-

als, it is a common practice to represent the constitutive equa-

tion through a strain energy density function. An elastic

material that has a strain energy density is known as a hypere-

lastic material.1,2 Many theoretical models have been developed

to characterize the mechanical behavior of hyperelastic materi-

als. These models are divided into two categories: models based

on statistical mechanics and those which take the phenomeno-

logical approach of treating the material as a continuum.3 The

statistical approach is concerned with assumed statistical distri-

butions of the lengths, orientations, and structure of rubber

molecular networks. The phenomenological approach is based

on the observation of rubber under various conditions of

homogeneous strain and is concerned with fitting mathematical

equations to experimental data. Based on the phenomenological

approach, models are invariant-based or stretch-based. For

example, Mooney4 published an invariant-based phenomenolog-

ical model in terms of principal invariants of the left Cauchy-

Green strain tensor. Later, Treloar5 proposed the so-called Neo-

Hookean material model in terms of the first invariant with

only one material parameter. Kakavas6 expressed the strain

energy density function in terms of the second and third

invariants of the logarithmic strain tensor with three material

parameters. The two-parameter Gent model7 is a first invariant-

based and has some attractive features. Rivlin8 introduced a

generalized model, also called polynomial hyperelastic model, in

terms of strain invariants. Following this structure, several

investigators attempted to take into account strain invariants in

their models in the framework of polynomial hyperelastic

model. For example, Yeoh model9 and Biderman model,10 alto-

gether are polynomial forms of strain energy and encompass

the high order of strain invariants.

Rivlin and Saunders11 proposed that a strain energy density

function is expressible in the form of even powered series of the

principal stretches. A variety of strain energy density functions

have been extracted from Rivlin’s model. Valanis-Landel12 pro-

posed that a strain energy density can be written as sum of

independent functions of the principal stretches for incompres-

sible materials. Attard13 presented the strain energy density as a

geometric series of principal stretches containing only even

powers. Another important phenomenological theory is attrib-

uted to Ogden.14 Ogden proposed that the strain energy func-

tion can be represented as a series of principal stretches with

real positive and negative powers. This model gives accurate

results with at least three terms.

In this article, it is considered a polynomial model with only inte-

ger even powers of stretches to give a satisfactory correspondence

with experimental results over wide ranges of different types of

deformation. This constitutive model is represented in terms of the

first and second invariants of Cauchy-Green strain tensor B. It has

a simple mathematical form and is appropriate to describe the
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deformability of rubber-like materials at large strain levels. It is

noteable that this model has a structure similar to Rivlin model. To

investigate the appropriateness of this model in comparison to

other polynomial-type strain energy densities specially family of

Rivlin, several experimental results for incompressible materials

under homogeneous strain are examined. The results are compared

with those of extracted from the Rivlin model. This model can pro-

vide the foundation of existence of a closed form solution for the

boundry value problems in the finite deformation elasticity. Here,

as an application of this model, it is applied to the problem of tor-

sion and extension of hyperelastic solid circular cylinders. This

problem has been investigated theoretically by many researchers.

Kanner and Horgan15 investigated the effects of strain-stiffening on

the response of solid circular cylinders in the combined deforma-

tion of torsion and axial extension by considering particular consti-

tutive models for materials that reflect limiting chain extensibility

at the molecular level. Horgan and Murphy16 formulated the prob-

lem of torsion and extension of a solid circular cylinder for a gen-

eral strain energy density that depends on alternative invariants,

namely the invariants of the stretch tensor. In this article, the ana-

lytical solution for the problem of torsion and extension of a solid

circular cylinder made of the elastomers with S-shaped and semi J-

shaped mechanical behavior is derived. Moreover, the results of

this solution are compared with those of extracted from classical

strain energy densities, Moony-Rivlin and Neo-Hookean. These

comparisons are done to investigate the application the well-

known classic models instead of the presented higher-order model

without loss in accuracy.

FUNDAMENTALS

We recall that the general motion of a continuum is described

by x5v X; tð Þ, where x is the spatial position at time t of a

material particle with the material coordinate X. v is a vector

field that specifies the place x of X for all fixed t, and is called

the motion of the body. The motion v carries points X located

at the initial configuration to places x in the current configura-

tion. The relation between dX and dx is given by1

dx5F d X (1)

where F is the deformation gradient tensor and transforms a

material element dX at the reference configuration into a mate-

rial element dx at time t. In general, F has nine components for

all t, and it characterizes the behavior of motion in the neigh-

borhood of a point. Since det Fð Þ > 0, the polar decomposition

theorem states that F is uniquely decomposed as1

F5RU5VR (2)

where U and V are the right and left stretch tensors, respectively.

U and V are positive definite symmetric tensors and R is a

proper orthogonal rotation tensor, which represents the rotation

of the eigenvectors of U, Ni to the eigenvectors of V, ni :

ni5R Ni (3)

The other measures of deformation are as follows2

C5F TF5U 2;B5FF T5V 2 (4)

where B and C are the left and rigth Cauchy-Green tensors,

respectively, and the symbol of supra T denotes to the transpose

of tensor. Let k1; k2; k3 be eigenvalues of the stretch tensors.

Indeed, ki are the principal stretches of the deformation. The

strain energy density of a homogeneous, isotropic, elastic mate-

rial is generally represented in terms of three independent

stretch invariants. The most common invariants are2

I15tr Bð Þ5k2
11k2

21k2
3

I25
1

2
ðtrðBÞÞ22trðB2Þ
� �

5k2
1k

2
21k2

1k
2
31k2

2k
2
3

I35det ðBÞ5k2
1k

2
2k

2
3

(5)

The polymers similar to liquids can move relative to one

another, so that the rubber is easy to change shape. Given this

molecular picture, it is clear that the rubber is much easier to

change shape than change volume. The shear modulus is much

smaller than the bulk modulus. In modeling, we often neglect

the change in volume, and focus on change in shape. That is,

we assume that the rubber is incompressible. Numerous poly-

meric materials can undergo finite strains without considerable

volume changes. Such materials may be regarded as incompres-

sible so that only isochoric motions are possible. For many

cases, this is an idealization and the constraint I351 is applied

to the strain energy density function of these materials.

For the case of isotropy, the dependence of the strain energy

density function on the Cauchy-Green tensors C or B may be

expressed by their three strain invariants. However, for the

incompressible case the two principal invariants I1 and I2 are

the only independent deformation variables. A suitable strain-

energy function for incompressible isotropic hyperelastic materi-

als is in the form of2

W 5W I1 Bð Þ; I2 Bð Þð Þ2 1

2
p I321ð Þ (6)

where W is the strain energy density function and p is the inde-

terminate scalar arising from the constraint of incompressibility.

The response of an incompressible isotropic elastic material can

be derived based on eq. (6) in the following form (see, e.g.,

Truesdell and Noll,17 Ogden,1 and Beatty18):

r52pI12
@W

@I1

B22
@W

@I2

B21 (7)

where r denotes the Cauchy stress tensor. This standard consti-

tutive law plays an important role in finite elasticity.

Constitutive Modeling

Several strain energy density expressions have been suggested for

rubber. Darijani and Naghdabadi19 used the phenomenological

approach due to its relative simplicity and consistency within a

continuum framework, to obtain the suitable forms for strain

energy density function. They showed that a strain energy func-

tion for incompressible materials could be expressed as follows

W 5wðk1Þ1wðk2Þ1wðk3Þ (8)

where wðkiÞ is the sum of the series as

wðkiÞ5
X1
k51

Akðkmk

i 21Þ1
X1
k51

Bkðk2nk

i 21Þ (9)

where mk ; nk take real positive values and the coefficients Ak

and Bk are the material parameters. A strain energy density
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function can be approximated as closely as desired by suitable

choice of these forms containing a finite number of terms. The

number of parameters required to define the strain energy density

depends on the level of nonlinearity and state of loadings. This

study is focused on the strain energy density function with simple

mathematical form that its effectiveness is evaluated using the

experimental observations and is applied to find an analytical

solution for the problem of torsion and extension of solid circular

cylinders in the field of nonlinear elasticity. Setting m252; n250

and m252; n252 into eq. (9) gives the Neo-Hookean and

Moony-Rivlin strain energy density models, respectively. These

models have simple mathematical forms as follows

� Neo-Hookean strain energy function

W ðk1; k2; k3Þ5A2 k2
21k2

21k2
323

� �
W ðI1Þ5ANeo

2 I123ð Þ
(10)

� Moony-Rivlin strain energy function

W ðk1; k2; k3Þ5A2 k2
11k2

21k2
323

� �
1B2 k22

1 1k22
2 1k22

2 23
� �

W ðI1; I2Þ5AMR
2 I123ð Þ1BMR

2 I223ð Þ
(11)

Setting m252;m454;m656; n252 into eq. (9), gives

W k1; k2; k3ð Þ5A2 k2
11k2

21k2
323

� �
1B2 k22

1 1k22
2 1k22

3 23
� �

1A4 k4
11k4

21k4
323

� �
1A6 k6

11k6
21k6

323
� �

(12)

For an incompressible material, I351, we can write the follow-

ing relations

k2
11k2

21k2
35I1

k22
1 1k22

2 1k22
3 5I2

k4
11k4

21k4
35I2

1 22I2

k24
1 1k24

2 1k24
3 5I2

2 22I1

k6
11k6

21k6
35I3

1 23I1I213

k26
1 1k26

2 1k26
3 5I3

2 23I1I213

k8
11k8

21k8
35I4

1 24I2
1 I222I2

2 14I1

k28
1 1k28

2 1k28
3 5I4

2 24I2
2 I122I2

1 14I2

(13)

Hence, eq. (12) in terms of the principal invarients of Cauchy-

Green strain tensor B can be written as follows

W I1; I2ð Þ5A2 I123ð Þ1B2 I223ð Þ1A4 I2
1 22I223

� �
1A6 I3

1 23I1I2

� �
(14)

Equation (14) is a new reconstructed model in terms of

I1; I2ð Þ. A generalized form for strain energy density function

in terms of I1; I2ð Þ can be obtained by setting powers m252;

m454;m656;m858; :::&n252; n454; n656; n858; ::: as follows

W I1; I2ð Þ5B2 I223ð Þ1B4 I2
2 22I123
� �

1B6 I3
2 23I1I2

� �
1B8 I4

2 24I2
2 I122I2

1 14I2

� �
1:

A2 I123ð Þ1A4 I2
1 22I223

� �
1A6 I3

1 23I1I2

� �
1A8 I4

1 24I2
1 I222I2

2 14I1

� �
1:

(15)

Rivlin8 proposed that a strain energy density function for

incompressible materials could be expressed as the sum of the

series in the following form

W 5
X1
p50

X1
q50

Cpq I123ð Þp I223ð Þq (16)

for q50; p51ð Þ, eq. (16) is reduced to the Neo-Hookean model,

for set of q50; p51ð Þ, p50; q51ð Þ, is reduced to the Moony-

Rivlin model and for set of q50; p51ð Þ, p50; q51ð Þ,
p51; q51ð Þ, and p53; q50ð Þ, is reduced to a model that its

structure and terms are similar to eq. (14), a model from the

set of generalized form for strain energy functions given in eq.

(15), as follows

W 5C10 I123ð Þ1C01 I223ð Þ1C11 I123ð Þ I223ð Þ1C30 I123ð Þ3

(17)

The determination of material parameters and the evaluating

effectiveness of these models is based on the correlation

between the values of the strain energy density (rather than

the stresses) cast from the theory and the test data.19 The test

data involve a state of pure homogeneous deformation that

includes simple tension/compression, pure shear, and equi-

biaxial tension tests.

For an incompressible material, the principal components of the

Lagrangian stress, Si , and the Cauchy stress, ri , are obtained

from the strain energy density as follows1

Si5
@W

@ki

2
p

ki

; ri5ki

@W

@ki

2p; k1k2k351 (18)

In simple tension/compression, we know that r15r; k15k, and

r25r350. For isotropy of the material, k2; k35k20:5 and the

stress-deformation relations are combined to give19

r5k
d ~W

dk
; ~W 5

ðk

1

r
k

dk (19)

where ~W kð Þ5W k; k20:5; k20:5
� �

.

For pure shear deformation, k351 and we set k15k, k25k21

with r15r; r250. A nonvanishing stress r3 is required to

maintain k351. Eliminating r3, it can be concluded that

r5k
d ~W

dk
; ~W 5

ðk

1

r
k

dk; (20)

where ~W kð Þ5W k; k21; 1
� �

.

In equibiaxial tension, we have r15r25r and r350 coupled

with k15k25k. Consequently, we have

r50:5k
d ~W

dk
; ~W 52

ðk

1

r
k

dk (21)

where ~W kð Þ5W k; k; k22
� �

.

Mechanical Behavior Modeling of Rubber-Like Materials

In this section, behavior modeling of hyperelastic materials

arranged in the range of S-shaped to J-shaped is studied. Tre-

loar5 tested an unfilled natural rubber (cross-linked with 8 parts

of S) under simple tension, pure shear and equi-biaxial tension

up to quite large values of the stretch k (about 7.0 in simple

tension). The curves of stress-stretch of this rubber in the
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above-mentioned deformation modes is similar to S-shape (see

Figure 1). Models of above-mentioned strain energy density

with their descriptions for the test data are presented in Table I.

The Table shows that the proposed model is more effective than

the other models due to it has less residual sum of squares

(RSS). Figure 1 depicts a comparison for the results of the

theory and the tests on the rubber of Treloar. In addition, Fig-

ure 2 shows the errors of the strain energy models in fitting the

test data of Treloar.5

Similarly, models of above-mentioned strain energy density with

their descriptions for the test data of Alexander20 and Heuillet

and Dugautier21 are presented in Tables II and III, respectively.

Figures 3–5 show a comparison of the predictions for the stress

values and those extracted from the experimental results of

Alexander and Heuillet and Dugautier, respectively. In both Fig-

ures 3 and 5 there is a good agreement between the experimen-

tal and theoretical results. Figures 4 and 6 illustrate the

estimated errors of the theoretical models in accordance with

the test data of Alexander20 and Heuillet and Dugautier,21

respectively.

In addition, Kawabata22 tested a rubber under simple tension,

pure shear, and equi-biaxial tension. Models of strain energy

density mentioned above with their descriptions for the test

data are presented in Table IV. The Table shows that the pro-

posed model is more effective than the other models due to it

has less RSS. Figure 7 depicts a comparison for the results of

the theory and the tests on the rubber of Kawabata. The errors

of the models are shown in Figure 8.

For the test data of Alexander, Rivlin model, eq. (17), has less

RSS relative to the proposed model, eq. (14). However, for the

other tests the proposed model show better agreement between

the results of the theory and the test data.

Application

Energy function presented in this article is able to capture a

wide range of mechanical behavior of hyperelastic materials

from S-shaped to J-shaped. Thus, there is an expectation that

applying these models for behavior prediction of a real structure

gives dependable results. In this section using these energy func-

tions, exact analytical solution without any simplification or

forgoing part of solution can be achieved for a hyperelastic

cylindrical tube under finite extension and torsion, steps to

achieve the analytical solution is expressed very simple with the

full details. In addition, these analytical solutions are physically

appealing because they offer a clear view into how variables and

interactions between variables affect the result, they have

advantage of serving as a baseline reference for numerical solu-

tion and experimental results, analytical solutions are free from

any error.

Finite Deformation of a Solid Cylinder Under Extension and

Torsion

Consider a solid circular cylinder with radius A composed of an

incompressible isotropic hyperelastic material subjected to a

stretch in the axial direction and to a twist at its ends. The

Figure 1. Comparison of the theory with the experimental results on the rubber of Treloar5 (a) equi-biaxial and pure shear tests data and (b) uniaxial

test data. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table I. Evaluation Effectiveness of Models for Correlation with Test Data

of Treloar5

Type of model RSS Material parameters

Proposed model 0:01 A250:3501=2;B250:0109=2

A4520:0064=4;A650:0002=6
Rivlin model 0:08 C1050:1471;C0150:0097

C11520:0002;C3050:00002
Moony-Rivlin model 3:30 AMR

2 50:1812

BMR
2 50:0028

Neo-Hookean model 5:67 ANeo
2 50:1875
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cylindrical polar coordinates of a particle in the spatial and

undeformed reference configurations are denoted by ðr; h; zÞ
and ðR;H;ZÞ, respectively. The undeformed configuration of

cylinder is

0 � R � A; 0 � H � 2p; 0 � Z � L (22)

Deformation of the cylinder is a pure torsion with plane cross

sections remaining plane followed by a homogeneous extension

or vice versa. Because of the symmetry of the geometry and

loading conditions, the description of the material particles

deformation in terms of current cylindrical polar coordinates ðr;
h; zÞ is as follows15

r5k21=2R; h5H1skZ ; z5kZ (23)

where s is angle of twist per unit length of the current configura-

tion and k is the ratio of deformed length and the initial length L.

The deformed radius a is given by a 5 k21/2A. It is reasonable to

expect that a stress system equivalent to a moment and an axial

force is required to maintain the deformation. The physical com-

ponents of the deformation gradient tensor F are

F5

k21=2 0 0

0 k21=2 k1=2Rs

0 0 k

2
664

3
775 (24)

The left Cauchy-Green strain tensor B and its inverse are given

by15

B5

k21 0 0

0 k211k2R2s2 k3=2Rs

0 k3=2Rs k2

2
6664

3
7775;

B215

k 0 0

0 k 2k1=2sR

0 2k1=2sR k221s2R2

2
6664

3
7775

(25)

The principal invariants of B are

I1 Rð Þ5k212k211ks2R2

I2 Rð Þ52k1k221s2R2

I351

(26)

Using eqs. (7) and (25), the nonzero components of the Cauchy

stress tensor are as follows15

rr52p12 k21 @W

@I1

2k
@W

@I2

� �
(27)

Figure 2. Estimation of error for the test data of Treloar5 (a) equi-biaxial test data and (b) uniaxial test data. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Table II. Evaluation Effectiveness of Models for Correlation with Test

Data of Alexander20

Type of model RSS Material parameters

Proposed model 8:38 A250:2375=2;B250:0828=2

A450:0279=4;A650:0002=6
Rivlin model 2:74 C1050:3353;C0150:0141

C1150:0002;C3050:0001
Moony-Rivlin model 593:21 AMR

2 50:6457

BMR
2 50:0189

Neo-Hookean model 1124:38 A2
Neo50:7362

Table III. Evaluation Effectiveness of Models for Correlation with Test

Data of Heuillet and Dugautier21

Type of model RSS Material parameters

Proposed model 1:56 A250:5049=2;B250:0346=2

A4520:0122=4;A650:0003=6
Rivlin model 2:09 C1050:2062;C0150:0243

C11520:0002;C30520:000004
Moony-Rivlin model 2:34 AMR

2 50:2015

BMR
2 50:0216

Neo-Hookean model 22:15 ANeo
2 50:2272
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rh52p12 ðk211ks2R2Þ @W

@I1

2k
@W

@I2

� �
(28)

rz52p12 k2 @W

@I1

2ðk221s2R2Þ @W

@I2

� �
(29)

rhz52k1=2sR k
@W

@I1

1
@W

@I2

� �
(30)

The only nonzero trivial equilibrium equation is as follows

drr

dR
1

rr2rh

R
50 (31)

Substituting eqs. (27) and (28) into eq. (31) gives

drr

dR
522ks2R2 @W

@I1

(32)

Solution of eq. (32) with boundry condition rrðaÞ50, is in the

form of

rr5

ðA

R

22ks2 @W

@I1

RdR (33)

Using eqs. (27) and (33), the scalar variable p is obtained and

the other non-zero stresses become as follows15,16

rh5

ðA

R

22ks2 @W

@I1

RdR12ks2R2 @W

@I1

(34)

Figure 3. Comparison of the theoretical and experimental results on the neoprene film of Alexander20 (a) equi-biaxial test data and (b) uniaxial test

data. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Estimation of error for the test data of Alexander20 (a) equi-biaxial test data and (b) uniaxial test data. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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rz5

ðA

R

22ks2 @W

@I1

RdR12ðk22k21Þ @W

@I1

12ðk2k222s2R2Þ @W

@I2

(35)

rhz52k3=2sR
@W

@I1

12k1=2sR
@W

@I2

(36)

The resultant applied moment M and axial force N required for

maintaining the deformation are15,16

M52p
ðA

0

rhz r2dr (37)

N52p
ðA

0

rz rdr (38)

substituting eqs. (35) and (36) into eqs. (37) and (38), we have

M5

ðA

0

R3 @W

@I1

1k21 @W

@I2

� �
dR (39)

N54pðk2k22Þ
ðA

0

R
@W

@I1

1k21 @W

@I2

� �
dR

22ps2

ðA

0

R3 @W

@I1

12k21 @W

@I2

� �
dR

(40)

Based on the Neo-Hookean, Moony-Rivlin and the proposed

model, a closed-form solution is obtained for stresses, moment,

and axial force as follows

� Neo-Hookean model

rr52ANeo
2 ks2ðA22R2Þ (41)

Figure 5. Comparison of the theoretical and experimental results on the rubber of Heuillet and Dugautier21 (a) equi-biaxial and pure shear tests data

and (b) uniaxial test data. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Estimation of error for the test data of Heuillet21 (a) equi-biaxial test data and (b) uniaxial test data. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

ARTICLE WILEYONLINELIBRARY.COM/APP

WWW.MATERIALSVIEWS.COM J. APPL. POLYM. SCI. 2015, DOI: 10.1002/APP.4171841718 (7 of 14)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/
http://www.materialsviews.com/


rh52ANeo
2 ks2ðA223R2Þ (42)

rz5ANeo
2 2ks2ðA22R2Þ12ðk22k21Þ
� 	

(43)

rhz52ANeo
2 k3=2sR (44)

M5ANeo
2 psA4 (45)

N52ANeo
2 pA2 k2k222

s2A2

4

� �
(46)

� Moony-Rivlin model

rr52AMR
2 ks2ðA22R2Þ (47)

rh52AMR
2 ks2ðA223R2Þ (48)

rz5AMR
2 2ks2ðA22R2Þ12 ðk22k21Þ
� 	

12BMR
2 k2k222s2R2
� �

(49)

rhz52k1=2sRðkAMR
2 1BMR

2 Þ (50)

M5psA4ðAMR
2 1k21BMR

2 Þ (51)

N52pA2 ðk2k22ÞðAMR
2 1k21BMR

2 Þ2
s2A2

4
ðAMR

2 12k21BMR
2 Þ


 �

(52)

� Proposed model

rr5f I1ðAÞ½ �2f I1ðRÞ½ � (53)

rh5f I1ðAÞ½ �2f I1ðRÞ½ �12ks2R2

AO
2 12AO

4 I1ðRÞ13AO
6 ðI1ðRÞÞ22I2ðRÞ
� 	�  (54)

rz5f I1ðAÞ½ �2f I1ðRÞ½ �12ðk22k21Þ½AO
2 12AO

4 I1ðRÞ
13AO

6 ðI1ðRÞÞ22I2ðRÞ
� �

�12ðk2k222s2R2Þ
½BO

2 22AO
4 23AO

6 I1ðRÞ�
(55)

rhz52k3=2sR½AO
2 12AO

4 I1ðRÞ13AO
6 ðI1ðRÞÞ22I2ðRÞ
� �

�
12k1=2sR½BO

2 22AO
4 23AO

6 I1ðRÞ�
(56)

M5
2p

k2s3
g I1ðAÞð Þ2g I1ð0Þð Þf g (57)

N5
2pð12k23Þ

s2
h1 I1ðAÞð Þ2h1 I1ð0Þð Þf g

2
p

k2s2
h2 I1ðAÞð Þ2h2 I1ð0Þð Þf g

(58)

where

f 5½3ðk2k22ÞAO
6 2AO

2 �I11
1

2
½3k21AO

6 22AO
4 �I2

1 2AO
6 I3

1 (59)

g5½2ðk212k21ÞAO
2 2ðk12k22ÞBO

2 12ðk12k22Þ

AO
4 13ð12k23ÞAO

6 �I11
1

2
½AO

2 1k21BO
2 22ðk213k21Þ

AO
4 13ð5k221kÞAO

6 �I2
1 1

1

3
½2AO

4 23ðk214k21ÞAO
6 �I3

1 1
3

4
AO

6 I4
1

(60)

Table IV. Evaluation Effectiveness of Models for Correlation with Test

Data of Kawabata22

Type of model RSS Material parameters

Proposed model 0:002 A250:4504=2;B250:0115=2

A4520:0309=4;A650:0015=6
Rivlin model 0:007 C1050:1654;C0150:0143

C11520:0003;C30520:00009
Moony-Rivlin model 0:064 AMR

2 50:1626

BMR
2 50:0074

Neo-Hookean model 0:353 ANeo
2 50:1824

Figure 7. Comparison of the theory with the experimental results on the rubber of Kawabata22 (a) equi-biaxial and pure shear tests data and (b) uniaxial

test data. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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h15½AO
2 1k21BO

2 22k21AO
4 23ðk2k22ÞAO

6 �
I11½AO

4 23k21AO
6 �I2

1 1AO
6 I3

1

(61)

h25½2 k212k21
� �

AO
2 22 k12k22

� �
BO

2 14 k12k22
� �

AO
4

13 12k23
� �

AO
6 �I11

1

2
½AO

2 12k21BO
2 22ðk214k21ÞAO

4

13ð7k2212kÞAO
6 �I2

1 1
1

3
½2AO

4 23ð5k211k2ÞAO
6 �I3

1 1
3

4
AO

6 I4
1

(62)

Pure Torsion

If we set k51 in the preceding, one recovers the problem of

pure torsion. From eq. (26), we have15

I1 rð Þ5I2 rð Þ531s2r2; I351 (63)

Since r5R For simple torsion, we can write all equations in

terms of r. Also, the undeformed and the current radius of the

cylinder are denoted as a. We obtain the results of stresses,

moment, and axial force for the problem of pure torsion

extracted from the proposed model as follows

rr5f I1ðaÞð Þ2f I1ðrÞð Þ (64)

rh5f I1ðaÞð Þ2f I1ðrÞð Þ12s2r2½AO
2 12AO

4 I1ðrÞ
13AO

6 ðI1ðrÞÞ22I2ðrÞ
� �

�
(65)

rz5f I1ðaÞð Þ2f I1ðrÞð Þ22s2r2½BO
2 22AO

4 23AO
6 I1ðrÞ� (66)

rhz52sr½AO
2 1BO

2 12AO
4 I1ðrÞ21ð Þ13AO

6 ðI1ðrÞÞ22I1ðrÞ2I2ðrÞ
� �

�
(67)

Figure 8. Estimation of error for the test data of Kawabata22 (a) equi-biaxial test data and (b) uniaxial test data. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Radial stress rr versus R for (a) a solid RA cylinder (b) a solid RT cylinder when A 5 0.1 m, s5p=6 rad/m and k 5 1.
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M5
2p
s3

g I1ðaÞð Þ2g I1ð0Þð Þf g (68)

N52
p
s2

h I1ðaÞð Þ2h I1ð0Þð Þf g (69)

where

f 52AO
2 I11

1

2
½3AO

6 22AO
4 �I2

1 2AO
6 I3

1 (70)

g5½23AO
2 23BO

2 16AO
4 �I11

1

2
½AO

2 1BO
2 28AO

4 118AO
6 �I2

1

1
1

3
½2AO

4 215AO
6 �I3

1 1
3

4
AO

6 I4
1

(71)

h5½23AO
2 26BO

2 112AO
4 �I11

1

2
½AO

2 12BO
2 210AO

4 127AO
6 �

I2
1 1

1

3
½2AO

4 218AO
6 �I3

1 1
3

4
AO

6 I4
1

(72)

RESULTS AND DISCUSSIONS

There has been remarkable interest to know that how an appro-

priate strain energy density is selected for response prediction

of a structure which undergoes 3D deformations. It can be

claimed that difference among the results predicted based on

different strain energy models depends on the degree of their

correlation with test data. Figure 1 shows that Neo-Hookean

Figure 10. Hoop stress rh versus R for (a) a solid RA cylinder (b) a solid RT cylinder when A 5 0.1 m, s5p=6 rad/m and k 5 1.

Figure 11. Nondimensional applied moment versus total angle of twist sA for (a) a solid RA cylinder (b) a solid RT cylinder. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and Mooney-Rivlin models can follow the test data of the rub-

ber tested by Treloar for stretches <2. It seems that these mod-

els are able to capture S-shaped mechanical behavior of the

materials with moderate deformations. It can be expected that

applying Neo-Hookean and Mooney-Rivlin models to a real

structure made of the rubber tested by Treloar under moderate

deformations can yield acceptable results. In Figure 3, the corre-

lation of Neo-Hookean and Mooney-Rivlin with the test data of

the rubber tested by Alexander shows that these models cannot

follow the material behavior. It seems that Neo-Hookean and

Mooney-Rivlin models are not able to track the trend of semi J-

shaped mechanical behavior of the materials. Thus, there is an

expectation that applying Neo-Hookean and Mooney-Rivlin for

behavior prediction of a real RA structure, made of the rubber

tested by Alexander, gives undependable results. In the follow-

ing, Figures 9–12 confirm the above-mentioned comments.

In addition, we expect the trend and the values of the results

obtained from the presented strain energy to be comparable

with experimental observations. In fact, to compare the analyti-

cal solutions obtained with their corresponding experimental

data, we need the test data related to the cylindrical tubes made

of RT (the rubber tested by Treloar) and RA (the rubber tested

by Alexander). Since there is no available test data related to

this problem, we can only compare the results from the pro-

posed model with those extracted from the classic models.

Figure 12. Nondimensional resultant axial force versus total angle of twist sA for (a) a solid RA cylinder (b) a solid RT cylinder. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 13. Nondimensional applied moment versus total angle of twist sA in the pure torsion for (a) a solid RA cylinder (b) a solid RT cylinder.
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Figure 9(a,b) show the distribution of radial stress, rr , predicted

from the proposed model and two classical models for a solid

cylinder made of the material tested by Alexander (which is

called solid RA cylinder in the following) and a solid cylinder

made of the rubber tested by Treloar (which is called solid RT

cylinder in the following), respectively. Also, Figure 10(a,b)

show the distribution of hoop stress, rh, predicted from the

proposed model and two classical models for a solid RA cylin-

der and a solid RT cylinder, respectively.

As it can be seen from Figures 9 and 10, the difference between

the results predicted from the proposed model and the classic

models for the solid RA cylinder is significant while this differ-

ence for the solid RT cylinder is negligible.

In Figures 11 and 12, we plot the nondimensional applied

moment and axial force versus total angle of twist sA for a solid

circular cylinder under torsion and extension. As it can be seen

from these figures, for a solid RA cylinder under torsion and

extension the results obtained from the proposed model and

two other classic models are not coincident and their difference

is considerable. While, for a solid RT cylinder under torsion

and extension the results predicted from the proposed model

and two other classic models are almost coincident till angle of

twist sA51:5. This angel of twist for solid circular RT cylinder

is corresponded to limit point of the moderate deformations.

Since the proposed model has less RSSs it can be concluded

that the results predicted from this model is more accurate than

classic models. Since that difference between the results

extracted from the models of strain energy depends on the

degree of their agreement to the test data (see RSS given in

Tables I and II), the curves related to Neo-Hookean and

Moony-Rivlin models are almost coincident together in Figures

11 and 12.

Thus, Moony-Rivlin and Neo-Hookean are reasonably accurate

in predicting the response of the solid circular RT cylinder

under extension and torsion at small ranges of stretch whereas

for larger values of stretch, they fail to predict the strain-

stiffening that is observed experimentally.

These models are not able to predict the response of a solid cir-

cular cylinder made of the materials with strain-stiffening

behavior. As it can be seen from Figure 12, regardless of the

amount of stretch k, the axial force increases as sA increases.

Hence, using the proposed model, resultant axial force necessary

to maintain deformation is compressive such that in the absence

of this force, the cylinder always has a tendency to elongate

upon twisting.

In Figures 13 and 14, we plot the nondimensional applied

moment and axial force versus total angle of twist sA for a solid

Figure 14. Nondimensional resultant axial force versus total angle of twist sA in the pure torsion for (a) a solid RA cylinder (b) a solid RT cylinder.

Figure 15. Nondimensional additional axial force versus total angle of

twist sA for a solid RA cylinder.
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circular cylinder under pure torsion predicted by the proposed

model. It can be verified that the resultant axial force, N,

required to maintain pure torsion is compressive. In the absence

of such a force, the bar would elongate on twisting reflecting

the celebrated Poynting effect.23 To investigate the dependence

of the resultant moment M and axial force N on the twist s and

the stretch k, we define N0 � N k5k0; s50ð Þ, in fact N0 k0ð Þ is

the axial force necessary to produce an axial stretch k5k0 in the

absence of twist. NT is defined as follows15

N k0; sð Þ5N0 k0ð Þ1NT k0; sð Þ (73)

NT is an additional axial force that is necessary to maintain a

constant stretch of k5k0 under torsion. From eq. (40) we have

N0 k0ð Þ52pA2 k02k22
0

� � @W

@I1

1k21
0

@W

@I2

� �
(74)

Using eqs. (40), (73), and (74), an expression for NTis yielded.

In the absence of the additional force NT, the stretch k under

torsion differs from k0. If N is an increasing function of s, NT

is positive and if N is a decreasing function of s, NT is negative.

In Figure 15, the nondimensional additional axial force is plot-

ted versus total angle of twist sA predicted from the proposed

model.

Figure 15 shows that the additional axial force for maintaining

a constant axial stretch is always compressive. In the absence of

such a force, the cylinder tends to elongate under torsion. We

can consider a constant axial force N to know that how k
changes as a function of s rather than keeping the stretch con-

stant. If we assume15

N k; sð Þ5N0 k0; s50ð Þ (75)

Then for an arbitrary k0, we can obtain from eq. (75), k5k sð Þ.
In Figure 16, we plot k versus sA when N5N0 k0ð Þ for k051; 2;

3 predicted from the proposed model. It is clear that each curve

in Figure 16 intercepts the vertical axis at k5k0. The values N0

may be calculated from eq. (74) and depend on the constitutive

model being used. Value N050 corresponds to k051.

CONCLUSION

In this article, the focus was on modeling mechanical behavior

of a class of incompressible materials using the polynomial

models of strain energy density. A polynomial strain energy

density function in terms of the principal invariants of Cauchy-

Green strain tensor B has been proposed and compared with a

similar function form the set of Rivlin. The appropriateness of

the proposed model for describing the high deformability of

rubber-like materials in large strain levels has been investigated

using several tests. The results show the good agreement

between the experimental findings and theoretical predictions

from the proposed model. As an application of the proposed

model, it has been used to obtain a closed-form solution for

the stress analysis of the rubbery solid circular cylinders made

of the elastomers with S-shaped and semi J-shaped mechanical

behavior under simultaneous torsion and extension. The results

obtained from the classical models (Neo-Hookean and Moony-

Rivlin) and the proposed model show a significant difference

for solid circular cylinders made of the materials with semi J-

shaped behavior while this difference is negligible for materials

with S-shaped behavior. Moreover, it was observed that the

resultant axial force necessary to maintain deformation is com-

pressive such that in the absence of such an axial force, the cyl-

inders tend to elongate on both pure torsion and simultaneous

extension and torsion cases.
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